Preliminary communication

BASIC METALS

XXIII*. SYNTHESIS AND REACTIVITY OF LEWIS-BASE OSMIUM(0) COMPLEXES

H. WERNER* and R. WERNER

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg (B.R.D.)

(Received March 31st, 1980)

Summary

The complexes $C_6H_6OsL_2$ (L = PPh₃, P(OMe)₃) and C_6H_6OsLL' (L = PMe₃, L' = C_2H_4 and C_3H_6) have been prepared by reduction of $[C_6H_6OsIL_2]^+$ and $[C_6H_6OsILL']^+$ with NaC₁₀H₈ in THF. These novel osmium(0) complexes are strong Lewis bases and react with NH₄PF₆ or MeI to form stable cations containing Os—H and Os—CH₃ bonds; the reactions of the latter complexes are briefly discussed.

Our recent finding that half-sandwich type complexes of the general composition $C_5H_5ML_2$ (M = Co [2,3], Rh [2,4]) and $C_6H_6RuL_2$ [5], where L is PR₃ or P(OR)₃, are strong Lewis bases, and thus useful starting materials for the synthesis of hydridometal and alkylmetal cationic species, prompted us to explore the chemistry of the corresponding formerly unknown benzeneosmium compounds. We were also interested in learning whether analogous osmium(0) complexes C_6H_6OsLL' containing both a phosphine (L) and an olefin (L') are accessible.

Treatment of $[C_6H_6OsI_2]_2$ (I) with triphenylphosphine $(C_6H_6, 80^{\circ}C, 2 \text{ h})$ gives by iodide-bridge cleavage the mononuclear complex $[C_6H_6OsI_2(PPh_3)]$ (II), which upon treatment with AgPF₆ $(CH_3NO_2, 25^{\circ}C)$ and subsequent addition of PPh₃ (60°C, 7 h) gives the salt $[C_6H_6OsI(PPh_3)_2]PF_6$ (III). The analogous bis(trimethylphosphite) complex (IV) is obtained directly from I and P(OMe)₃ in the presence of NH₄PF₆ (CH₃OH, 60°C, 2 h). Synthesis of the osmium(0) compounds $[C_6H_6Os(PPh_3)_2]$ (V) and $[C_6H_6Os(P(OMe)_3)_2]$ (VI) is achieved by lowtemperature reduction of III and IV with sodium dihydronaphthylide in tetrahydrofuran. The complexes V and VI are extremely sensitive to air and decom-

^{*}For Part XXII see ref. 1.

Complex	$\delta(C_6H_6)$	J(PH)	δ(L)	J(PH)	δ(L')
v	4.59 t	0.6	7.0 m		
VI	5.07 s		3.52 vt	а	
XIII	4.72 d	0.6	1.05 d	8.7	1.67 m
XIV	4.73 d	0.7	0.99 d	8.6	3.18 m [C ₂ H ₃ Me]
					$1.60 \text{ m } [C_2H_3Me]$

¹H NMR SPECTRA OF COMPLEXES $[C_6H_6OsL_2]$ AND $[C_6H_6OsLL']$ IN C_6D_6 (δ in ppm, J in Hz; s, singlet; d, doublet; t, triplet; m, multiplet; vt, virtual triplet)

 $a_{J'} = 12.4$ Hz.

pose slowly even when stored under N_2 . The ¹H NMR data are shown in Table 1. The strong nucleophilicity of the complexes V and VI is demonstrated by

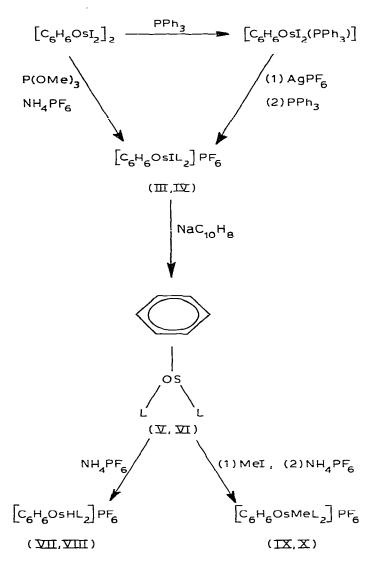
their smooth reactions with NH_4PF_6 and methyliodide (THF, 25°C) which produce the cations $[C_6H_6OsHL_2]^+$ and $[C_6H_6OsMeL_2]^+$ (Scheme 1). The ¹H NMR spectra of the osmium hydrides show a high-field triplet at δ –11.0 (*J*(PH) 34 Hz) for VII and –13.3 (*J*(PH) 35.5 Hz) for VIII, the difference reflecting the different electron densities at the metal atom.

The preparation of the cationic olefin complexes $[C_6H_6Osl(PMe_3)C_2H_3R]PF_6$ (XI: R = H, XII: R = Me) was by the route used for the synthesis of III. Reduction of XI and XII with NaC₁₀H₈ (THF, -78°C) yields the osmium(0) compounds $[C_6H_6Os(PMe_3)C_2H_3R]$ (XIII, XIV) which are somewhat more stable towards oxidation than the bis(phosphine) and bis(phosphite) analogues V and VI (for ¹H NMR data see Table 1).

$$I \xrightarrow{PMe_3} [C_6H_6OsI_2(PMe_3)] \xrightarrow{(1) AgPF_6} [C_6H_6OsI(PMe_3)C_2H_3R]PF_6$$
(XI, XII)

 $\underbrace{\operatorname{NaC_{10}H_8}}_{\operatorname{Io}} [C_6H_6Os(PMe_3)C_2H_3R]$

(XIII, XIV)


Treatment of XIII and XIV with NH_4PF_6 and methyl iodide (THF, 25°C) gives a quantitative yield of the cationic hydrido(olefin) and methyl(olefin) complexes $[C_6H_6OsH(PMe_3)C_2H_3R]^+$ and $[C_6H_6OsMe(PMe_3)C_2H_3R]^+$, a result which confirms the Lewis base character of the metal atom in the neutral compounds $[C_6H_6Os(PMe_3)C_2H_3R]$. The reactions of XV and XVI with NaH (THF, 25°C) provides a convenient route to the complexes XIII and XIV in a pure state.

 $[C_{6}H_{6}OsH(PMe_{3})C_{2}H_{3}R]PF_{6} \xrightarrow{NH_{4}PF_{6}} XIII, XIV \xrightarrow{(1) MeI}_{(2) NH_{4}PF_{6}}$ (XV, XVI) $[C_{6}H_{6}OsMe(PMe_{3})C_{2}H_{3}R]PF_{6}$

(XVII, XVIII)

The reactions of the hydrido(olefin) complexes XV and XVI with NaI (acetone, 50°C, 10 min) lead to insertion of the olefin into the hydride—osmium bond to form the compounds $[C_6H_6Os(C_2H_4R)(PMe_3)I]$. These in turn react with AgPF₆ (acetone, 25°C) to yield the hydrido(olefin) complexes $[C_6H_6OsH(PMe_3)C_2H_3R]PF_6$.

TABLE 1

SCHEME 1. III, V, VII, IX: $L = PPh_3$; IV, VI, VII, X: $L = P(OMe)_3$.

Treatment of the methyl(olefin) complexes $[C_6H_6OsMe(PMe_3)C_2H_3R]PF_6$ (XVII: R = H; XVIII: R = Me) with NaI does not lead to insertion but to displacement of the olefin to give $[C_6H_6OsMe(PMe_3)I]$. The difference in reactivity between the hydrido(olefin) and the methyl(olefin) cations is also found in the reactions of XV and XVII with trimethylphosphine. Whereas XV reacts with PMe₃ (acetone, 25°C, 12 h) to give a mixture of $[C_6H_6OsEt(PMe_3)_2]PF_6$ (XIX) and $[C_6H_6OsH(PMe_3)C_2H_4PMe_3]PF_6$ (XX), the reaction of XVII with PMe₃ (acetone, 25°C, 5 min) produces only $[C_6H_6OsMe(PMe_3)C_2H_4PMe_3]PF_6$ (XXI). The reaction of the methyl(propene) complex XVIII with trimethylphosphine (acetone, 50°C, 8 h) gives $[C_6H_6OsMe(PMe_3)_2]PF_6$ as the sole product.

In conclusion, there is no single case of a migration of the methyl group to the olefin in the reactions of cationic methyl(olefin) complexes $[C_6H_6RuMe(PMe_3)-C_2H_4]^+$ [6] and $[C_6H_6OsMe(PMe_3)C_2H_3R]^+$ with neutral or anionic nucleophiles Nu. The interaction of the analogous hydrido(olefin) complexes with the same nucleophiles Nu lead either to insertion or, in the case of XV and Nu = PMe_3, to addition of Nu to the olefin. The differences in behaviour towards PMe_3 between $[C_6H_6RuH(C_2H_4)PMe_3]^+$ (which only gives $[C_6H_6RuEt(PMe_3)_2]^+$ [6]) and $[C_6H_6OsH(C_2H_4)PMe_3]^+$ (which gives both XIX and XX) may be explained by the fact that the ethylene(hydrido)ruthenium cation is in equilibrium with the ethylruthenium complex, whereas the corresponding ethylene(hydrido)osmium cation is the only species detectable by ¹H NMR spectroscopy and deuteration experiments in solution.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. We thank the DEGUSSA company for generous gifts of chemicals and Mr. E. Sametschek for skilful experimental assistance.

References

- 1 H. Werner and R. Feser, Z. Naturforsch. B, in press.
- 2 H. Werner, H. Neukomm and W. Kläui, Helv. Chim. Acta, 60 (1977) 326.
- 3 H. Werner and W. Hofmann, Chem. Ber., 110 (1977) 3481.
- 4 H. Werner, R. Feser and W. Buchner, Chem. Ber., 112 (1979) 834.
- 5 H. Werner and R. Werner, Angew. Chem., 90 (1978) 721; Angew. Chem. Int. Ed. Engl., 17 (1978) 683.
- 6 H. Werner and R. Werner, J. Organometal. Chem., 174 (1979) C63.